Welcome to Adobe GoLive 6
Virginia Tech University Registrar

2012-2013 Undergraduate Course Catalog & Academic Policies

Academic Calendars Colleges & Course Descriptions Governance, Administration & Faculty
Academic Policies Financial Information Publication Information
Admissions Information General Information University Academic Advising Center

College of Engineering

www.eng.vt.edu

Richard C. Benson, Dean
Associate Dean for Academic Affairs: Bevlee A. Watford
Associate Dean for Administration, and Chief of Staff: Edward L. Nelson
Associate Dean for International Programs and Information Technology: Glenda R. Scales
Associate Dean for Research and Graduate Studies: John J. Lesko

bridge

Mission of the College

    Virginia Tech is the home of the commonwealth's leading College of Engineering. It is known in Virginia and throughout the nation for the excellence of its programs in engineering education, research and public service. It is the state’s largest engineering college, and ranks among the top five suppliers of new B.S. degrees in the United States.
    The mission of the College of Engineering is to offer high quality support for our stakeholders in order to provide a successful experience in the engineering education pursuits of our customers. The vision of the college is to foster strong working relationships between faculty, student and industry partners that will ultimately bring research opportunities through engineering educational offerings. The goals of the college are to attract high-caliber students and to provide them with a top-quality engineering education in preparation for productive careers; to invest in faculty development to enhance Virginia Tech's reputation as a research university and a leader in graduate education; and to forge new links with industry and government to facilitate economic development within the Commonwealth and the nation.

    In U.S. News & World Report’s “America’s Best Colleges 2012” survey, the College of Engineering’s undergraduate program ranks 15th among all accredited engineering schools. Among public universities, the college ranks seventh. Among available individual department programs rankings, the following standouts from 2012 are: industrial/manufacturing engineering, 7th; environmental, 12th; civil, 10th; mechanical engineering, 13th; aerospace engineering, 15th; and electrical engineering, 14th.

    For U.S. News & World Report’s 2013 report on Graduate Schools, the college ranked 24th. Four departments within the College of Engineering finished in the top 10 of their respective category. The Grado Department of Industrial and Systems Engineering ranked third among industrial/manufacturing programs. The Charles E.Via Jr. Department of Civil and Environmental Engineering ranked eighth among civil engineering programs, with the environmental engineering ranking seventh. The biological systems engineering department, also part of the College of Agriculture and Life Sciences, ranked seventh among biological/agricultural programs. Aerospace engineering was ranked 13th, electrical engineering at 21st, with computer engineering at 23rd, and mechanical engineering ranked 18th.

    According to the December 2010 issue of ASEE’s Prism, Virginia Tech’s Mining and Minerals Engineering Department graduated the most number of bachelor's degrees in the country with 49. Second was a far distant 25 at the Missouri University of Science and Technology.

    The National Science Foundation is a major contributor of grants to our college. Research expenditures during the fiscal year 2008 (released in April of 2010) totaled $152 million, placing the college 10th in the nation among the hundreds of engineering colleges for the second year in a row, according to the NSF. It is an increase of some $16 million from the previous year.

    The College of Engineering offers bachelor of science degrees in the following areas: Aerospace Engineering, Biological Systems Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science, Construction Engineering and Management, Electrical Engineering, Engineering Science and Mechanics, Industrial and Systems Engineering, Materials Science and Engineering, Mechanical Engineering, Mining Engineering, and Ocean Engineering. The Computer Science program is accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700. All other College of Engineering undergraduate programs in engineering are accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700.

    On September 13, 2010, the Wall Street Journal’s published survey of 479 of the largest public and private U.S. companies, nonprofits, and government agencies showed Virginia Tech’s College of Engineering ranked as the number five pick for graduates best prepared and most able to succeed. The Journal’s research represented a systematic effort to assess colleges by surveying employers’ recruiters who decide where to seek out new hires.

    Engineers play an important role in modern society. They design and develop new and better materials, products and processes for households and industries, from tiny semiconductors to huge dams. Engineers are needed across a broad spectrum of industry from the traditional field such as mechanical to the emerging fields of robotics and biomedicine. Engineers must not only satisfy society's demand for improved performance, reliability and safety of products, they also are expected to supply solutions for environmental and social problems created by new technology.

    Our graduates are well-rounded. Men and women trained in engineering will find many professional outlets. They may join large or small manufacturing industries or they may offer their skills and knowledge as professional consultants. They may work in government or private research laboratories or teach and do research in universities. If the future leads them into other professions such as medicine, law, food services or business, their engineering education shall provide a sound base. Graduates of the College of Engineering are in high demand. Our student-run Engineering EXPO-- one of the largest student-run career fairs in the country—attracted roughly 250 employers in 2011, and we are a key recruiting school for approximately 40 major corporations.

    It is essential that engineers, regardless of specialty, be well versed in mathematics, the physical sciences and the engineering sciences so that they can adapt readily to meet the profession’s ever-changing demands. But professional training is not enough. Engineers need to have imagination and insight. They must understand the history and traditions of the society in which they live. They also must be familiar with the social sciences and humanities.

    Engineers also must be able to communicate effectively with higher management and the general public. All departments within the college are implementing programs to ensure that every graduate is able to effectively use a variety of spoken, visual and written communication strategies which are necessary for success as a student, for employment, and for life as a responsible citizen. Additional emphasis is being placed in freshmen engineering classes to emphasize the importance of communications in engineering analysis and design.
    Engineers who are well educated, not just well trained, will be better equipped to develop scientific knowledge into useful technology.

Innovations of the College of Engineering

    In a move recognized by the National Academy of Engineering for its leadership, the College transformed its Engineering Fundamentals program into the Department of Engineering Education. This Department continues to train freshmen in the fundamental principles of engineering. The basic ideas and principles inherent in the freshman year — such as the scientific method, an introduction to design, an understanding of the engineer’s or technologist’s role and responsibility in modern society, and a first exposure to technical communication — are imparted in both an “analog” and a “digital” environment. Engineering Education also has developed M.S. and Ph.D. programs to prepare students to teach engineering or technology at any level, from kindergarten to college. The National Science Foundation has supported these developments through several major grants.

    Tenured or tenure-track faculty teach more than 90 percent of all engineering courses at Virginia Tech. Engineering faculty members focus on solving real world problems, and share these experiences in the classroom. The work of the faculty with industry brings modern, ground-breaking knowledge back to the classroom quicker than any textbook. These experiences provide a hands-on dimension that result in the superlative quality of engineering teaching for which Virginia Tech is so well known.
    The latest national survey released by the American Society for Engineering Education (ASEE) ranked the Virginia Tech College of Engineering seventh in the number of full-time teaching faculty, ninth for the number of tenured/tenure track women faculty, tenth for the number of African American faculty, twelfth for the number of Asian faculty, and seventh for the number of Hispanic faculty. The data was based on a survey of 333 engineering schools.

    Virginia Tech engineering undergraduates are fortunate to have a combination of excellent classroom instruction and the opportunity to participate in "hands-on, minds-on" engineering training. This “hands-on, minds-on” training is made possible by two unique facilities, established by the generosity of College of Engineering alumni, that are available to undergraduates.

    In the Joseph F. Ware, Jr. Advanced Engineering Laboratory, students design and construct competition projects including Formula SAE race cars, Baja SAE vehicles, human-powered submarines and airplanes, radio-controlled aircraft, steel bridges, autonomous aerial and underwater vehicles, and hybrid electric vehicles.

    In the Frith Freshman Engineering Design Laboratory, freshmen learn engineering principles by working with a number of mechanisms donated by industry sponsors.

    The Virginia Tech Institute for Critical Technology and Applied Science (ICTAS) has emerged as a vital vehicle that presents a strong link to economic development for the entire Commonwealth. Led by Virginia Tech's College of Engineering, ICTAS presents a case for advancement of humankind through collaborative research, and it represents a strong link between all of the colleges of engineering across the Commonwealth. For the undergraduate, ICTAS will provide opportunities for research employment.

    ICTAS incorporates the common features of Organized Research Units (ORUs) that have produced strong economic growth around highly ranked universities. At Virginia Tech, we recognize that a university-affiliated ORU is more than a traditional research center. It must allow for, and encourage, a seamless path from fundamental research, through applied research and development, to technology transfer - not only by publications but also through the licensing of intellectual property, the initiation of new companies, student involvement, and technical assistance to Virginia companies.

    At Virginia Tech, the common features emerged for the ORUs of ICTAS include: the clustering of synergistic research groups; teaming of researchers with science and engineering backgrounds; a breadth of activities that bridges periods of transition in research emphasis; the employment of full-time researchers and support personnel but with strong linkages to academic units through faculty and student involvement; and an initial investment and financial structure that allows the research unit to become not only self-sustaining, but a provider of revenue to the university.

    ICTAS, in 2007, dedicated its first building, the Nanoscale Characterization and Fabrication Lab. Located in Virginia Tech’s Corporate Research Center, the lab is a 32,000--square-foot facility on par with the best nanotechnology labs in the world. In March 2009, the ICTAS-I building opened in the College of Engineering corridor along Stanger and Old Turner streets. The 99,000-square-foot building now serves as the institute’s home base, housing the School of Biomedical Engineering and Sciences as a principal tenant, in addition to the Sustainable Water Infrastructure Management program head by faculty members Marc Edwards and Sunil Sinha. The ICTAS-II building in the university’s life sciences corridor opened in the spring semester of 2011. It houses research labs with a biotechnology focus.

    The three facilities provide a total of 200,000 square feet for College of Engineering researchers and colleagues from the Colleges of Science, Natural Resources, and Veterinary Medicine to help Invent the Future, the mantra of Virginia Tech.

    Work also is moving ahead on the planned Signature Engineering Building. To be located near the corner of Stanger Street and Prices Fork Road, the roughly 153,000-gross square-foot facility will house space for the College’s core departments and serve as a leading center of engineering education in Virginia. Ground was broken on the project in fall 2011, and as of April the building was topped-out a month ahead of schedule. More information, including artist renderings and architecture plans can be found at http://www.eng.vt.edu/signaturebuilding.

    The philosophy of Virginia Tech's College of Engineering is to place the right technology in the hands of our students. This reasoning fostered our pioneering decision in 1984 to become the first large public university to require our entering engineering freshmen to purchase a PC. In 2002, the College of Engineering switched the requirement to a Notebook computer. In 2006, in order to provide the opportunity for our engineering students to continue their education at the cutting edge of technology, we moved to the Convertible Tablet PC. Use of this device in and outside of class provides our students with experiences that they will use in the future.

    The Convertible Tablet PC allows students to use digital ink for taking notes, drawing diagrams as part of the notes or homework assignments; annotating faculty PowerPoint slides or other electronic files and easily writing mathematical equations. Additionally, students are able to use digital-ink enabled collaboration software to support learning activities in and outside of class. By having all of their information electronically in one place, students have a tool to support them with organizing their assignments and time as well as collaborating electronically with their peers.

    The Tablets are used in engineering classes and incoming freshmen use their Tablets in their first year courses, such as EngE 1024, 1104 and 1114, as well as in many upper division classes. Formerly a "computer requirement,” this now is a "technology requirement.” We group the computer, software and any other tools necessary as part of an integrated requirement. Through this program we know that the students will benefit from their experience.

    The Myers-Lawson School of Construction further enhances Virginia Tech's recognized strong position of national leadership in construction education and research. The primary focus of the Myers-Lawson school is on values-based leadership in the construction industry. The school combines the strengths of two excellent programs - the Department of Building Construction in the College of Architecture, and the Vecellio Construction Engineering Management Program in the Charles E. Via Jr. Department of Civil and Environmental Engineering in the College of Engineering - to establish a new standard for construction education and research.

    The School of Construction provides undergraduates and graduates more choices for pursuing construction education. It is anticipated that the undergraduate degree in construction engineering and management will complement the existing degree programs in building construction and in civil and environmental engineering. The school will work with faculty from multiple departments to provide students with additional opportunities to pursue concentrations, minors, or support courses related to construction.
    The Myers-Lawson School and the Department of Building Construction is located at Bishop-Favro Hall, a 31,600-square-foot building that provides classroom space, seminar rooms, and studios for students. The facility also houses state-of-the-art laboratory spaces, include testing labs, wet labs, material handling, tool and welding labs, and workshops for assembly of construction systems.

Green Engineering

    Virginia Tech was one of the first universities to formally consider the connection between engineering practice and environmental stewardship from an interdisciplinary perspective. The Green Engineering Program was created in 1995 and serves all departments within the College of Engineering.

    This program combines environmentally conscious attitudes, values and principles with science, technology and engineering practice, and focuses this interdisciplinary approach toward improving local and global environmental quality. Based on engineering fundamentals, green engineering analyzes the design of products, processes, and systems to minimize the life cycle environmental impacts, from the initial extraction of raw materials to the energy consumption and waste production during manufacturing to the ultimate disposal of materials that cannot be reused or recycled.

    The Green Engineering Program works with students, faculty and the university administration to provide educational and research opportunities with regard to both the environmental impacts and the environmental solutions that can result from engineering practice.

    A university-recognized minor allows students to pursue their interests in Green Engineering in addition to their primary degree(s) in the College of Engineering. To obtain this minor, students are required to take 18 credit hours in the minor area as follows: six (6) credits in the two core courses – Introduction to Green Engineering and Environmental Life Cycle Analysis; six (6) credits in interdisciplinary elective courses; and six (6) credits in disciplinary electives within the students’ major. Detailed lists of the courses which meet the minor requirements can be found in the Green Engineering Web site at www.eng.vt.edu/green.

Examples of Accomplishments at the National Level

    The Virginia Tech Student Engineers’ Council (SEC) created a permanent funding source for the dozens of undergraduate design teams in the College of Engineering. An initial gift of $105,000 was presented to the college at the SEC’s Leadership Awards Luncheon in 2007. In 2008 and 2009, it awarded close to another $200,000 to the endowment. The council’s goal for the endowment to reach $500,000 by the end of 2010 was met and exceeded, allowing it to distribute $20,000 per semester to design teams. Boeing, through the leadership of AOE alumnus Marc Sheffler, has contributed some $100,000 to this endowment. In both 2003 and 2006, the Virginia Tech SEC was named the most philanthropic student organization in the country by the National Association of Engineering Student Councils, in recognition of grants supporting programs in the college. The SEC earns the revenue it donates to the college by hosting the annual Engineering Expo career fair, which attracts about 250 companies to the campus. In addition to grants, the SEC also has endowed three scholarships, each with a principal value of $25,000.

    Virginia Tech’s Robotics and Mechanisms Laboratory team dominated the 2011 international robot soccer competition known as RoboCup, winning the Louis Vuitton Humanoid Cup, the competition’s version of the Fédération Internationale de Football Association’s World Cup. The team also dominated with first place in both the adult size class with the 5-foot humanoid robot CHARLI-2 and the Kid Size class with the miniature-humanoid-robot DARwIn-OP. The win is not just a first for College of Engineering team headed by Dennis Hong (http://www.me.vt.edu/people/faculty/hong.html), associate professor of mechanical engineering, but a first for the United States. In all, Virginia Tech’s team took home four major awards from the international competition that is considered one of the most respected competitions in the robotics research community, and proposes a soccer match between full-size humanoid robots against the human World Cup human champions -- and win -- by the year 2050. Awards won include Best Humanoid Award, Louis Vuitton Humanoid Cup; First Place, Adult Size class; and Third Place, Technical Challenges for TEAM CHARLI, and First Place, Kid Size Class for TEAM DARwIn.

    In January of 2011 students with the Virginia Tech College of Engineering debuted two second-generation Blind Driver Challenge vehicles that allow the blind to drive using non-visual interface assistance technologies. Driven at the Daytona International Speedway, the modified 2010 Ford Escape Hybrid SUVs is part of the ongoing Blind Driver Challenge, a collaborative effort between the Virginia Tech and the nonprofit National Federation of the Blind, partnering with Blacksburg-based TORC Technologies. As part of the public debut, a blind person drove one of the vehicles on the inner-track of the racing landmark speedway.

    The Hybrid Electric Vehicle Team of Virginia Tech won the 2011 international EcoCAR Challenge, a three-year design competition that seeks to inspire science and engineering students to build more energy-efficient “green” automobiles. Awards were presented in Washington, D.C., after a two-week finale completion that had teams at General Motor's Milford Proving Grounds in Milford, Mich., and then the U.S. Department of Energy’s headquarters in the nation’s capital. In all, the team of Virginia Tech College of Engineering graduate and undergraduate students won 14 first place awards at the EcoCAR: The NeXt Challenge: Best Vehicle Testing Complete Presentation, Shortest Braking Distance, Lowest Fuel Consumption, Best Dynamic Consumer Acceptability, National Instruments Most Innovative Use of Graphical System Design Award, Best Progress Reports and Fastest Autocross ‘Fun Run’ Time. They tied for Best AVL Drive Quality, and won Second Place or Runner Up for Battery Worksmanship Award, Lowest Petroleum Energy Use and Lowest Tailpipe Emissions.

    A student team at the college’s Robotics & Mechanisms Laboratory (RoMeLa) created the world’s first and only vehicle that allows a blind or low-vision person to independently operate a motor vehicle without passenger assistance. The student team publicly debuted the prototype car at a summer camp for blind youth. “The Washington Post,” Discovery Channel and CBS News’ “Early Show” were on hand to capture the action. Fox News, “The New York Times,” and “Popular Science” also reported on the team, with “Momentum” and “Machine Design” magazines featuring students and the prototype red buggy on their respective covers. Yet, team members know that media attention is not the reason for their work. They are bettering lives. “We’re showing the world the extreme level of capability that the blind already have,” said then team leader Greg Jannaman, who now is working for National Instruments. In January of 2011, the team debuted the car at the Daytona International Speedway where it again made national and international news. Virginia Tech’s student team took the top spot in the competition of the inaugural 2011 Cyber Security Summit. The summit featured a morning of presentations from speakers in the cyber security field, followed by an afternoon competition where student teams faced off in efforts to attack and defend computer networks. This event is one of a number of cyber security initiatives underway at Virginia Tech to develop education and research efforts that address the critical need of industry and government.

    In fall 2011, three students from Virginia Tech’s Department of Mining and Minerals Engineering recently won first place in Carlson Software’s National Senior Mine Design Competition, marking the fifth straight year Virginia Tech students have placed first in the prominent mine design competition. Class of 2011 seniors Erich Dohm of Gainesville, Ga., and Wilson Lin and Jason Yeager, both of Manassas, Va., won this year’s event with their project titled “Flat Creek Quarry,” a proposed greenstone hard rock quarry located in Virginia’s south central Piedmont region.

    The Hybrid Electric Vehicle Team of Virginia Tech won the 2011 international EcoCAR Challenge, a three-year design competition that seeks to inspire science and engineering students to build more energy-efficient “green” automobiles. Awards were presented in Washington, D.C., after a two-week finale completion that had teams at General Motor's Milford Proving Grounds in Milford, Mich., and then the U.S. Department of Energy’s headquarters in the nation’s capital. In all, the team of Virginia Tech College of Engineering graduate and undergraduate students won 14 first place awards at the EcoCAR: The NeXt Challenge: Best Vehicle Testing Complete Presentation, Shortest Braking Distance, Lowest Fuel Consumption, Best Dynamic Consumer Acceptability, National Instruments Most Innovative Use of Graphical System Design Award, Best Progress Reports and Fastest Autocross ‘Fun Run’ Time. They tied for Best AVL Drive Quality, and won Second Place or Runner Up for Battery Worksmanship Award, Lowest Petroleum Energy Use and Lowest Tailpipe Emissions.

    A group of doctoral students in the Virginia Tech College of Engineering’s Computer Science Department and the Center for Human-Computer Interaction recently won first place in the 3D User Interfaces Grand Prize competition at the 2011 Institute of Electrical and Electronics Engineers Symposium. It is the second consecutive first-place win for the team known as the Fighting Gobblers, advised by associate professor Doug Bowman. The team won the competition via a video they prepared for the contest, held in Singapore. The competition required teams to develop a 3D user interface for a difficult virtual interaction task, in this case solving a cube-shaped 3D puzzle in a virtual environment. The 2010 version of the Gobblers, consisting of several different students also advised by Bowman, won the inaugural contest for creating a program that allowed a user to “shop” in a 3D virtual supermarket.

Major Undergraduate Scholarships

    For the 2011-2012 academic year, a total of $1,062,854 was awarded to undergraduate students in the College of Engineering. Funding is provided by 97 scholarships administered by the College and 168 scholarships administered throughout the engineering departments. Eleven entering freshmen and 39 continuing students received a Dean’s Scholar award for fall semester 2011. These scholarships are open to all incoming engineering freshmen and are awarded based on academic potential, community service, leadership potential, family circumstances and essay quality. Each scholarship is available for up to four years of undergraduate study, based on academic performance. This year the College offered four new, and continued 11 Eleanor Davenport Leadership Scholarships. The Davenport Scholarship provides full in-state tuition and fees and is renewable for students who maintain at least a 3.5 grade point average (out of a possible 4.0). The largest sponsor of upper-class scholarships continues to be the Gilbert and Lucille Seay Scholarship Fund, with 70 students receiving a total of $190,250 in scholarship funding.

Additional Facts about the College

    The University Honors Program offers a unique challenge to students with extraordinary intellectual and creative abilities. The program is available to all engineering departments and includes the opportunity for enrollment in accelerated courses, enriched sections, and independent study.

    A five-year Cooperative Education program for qualified students is available in all of the engineering curricula. After at least two qualifying semesters, students may alternate semesters of study on campus with work periods in industry. Participants are required to have a minimum of a 2.0 overall grade point average, and students must have earned a 2.0 in the semester prior to any work experience. Individual departments may impose higher GPA restrictions, including ones based on in-major GPA.

    Approximately 8,283 students are enrolled in undergraduate and graduate engineering departments at Virginia Tech as of fall 2010. In the entering 2010-2011 freshman class, the average SAT score for the general engineering student was 1280 and the average high school grade point average was 4.05 on a weighted scale. The male to female ratio in the college is 4:1. Members of under-represented populations make up 17.3 percent of the freshmen class.

    Of the 2010-2011 College of Engineering bachelor’s degree graduates who were employed full-time, (the most recent year for which statistics are known), 96 percent were employed in a field related to their major. The average annual salary at the bachelor's level was $60,000.

Admission

    All students admitted to the College of Engineering as freshmen are placed in the Department of Engineering Education and are designated as General Engineering students. Admission to a degree program is competitive, with departmental restrictions established each year by the college. Upon completion of a set of required freshman-level courses, students with acceptable academic records are eligible for transfer into one of the college's 14 degree programs. (The exception is that engineering students who are on the Dean's List their first semester may elect to transfer after one semester.)

    Students wishing to transfer into an engineering program or change majors from another college or degree program within the university must meet current standards set by the college for each engineering program. All major changes are processed by the Engineering Education.

    Students transferring to Virginia Tech from another college or university will be considered for admission to a degree granting engineering program once 12 hours of degree-applicable coursework is completed at Virginia Tech (including required courses for entry to a department).

    The college has a transfer articulation agreement with the Virginia Community College System. VCCS students who complete the transferable Associate Degree in engineering with a minimum 3.0 grade-point-average with “B” or better grades in all engineering, math and science courses, are guaranteed admission to the College of Engineering. Not all Virginia Community Colleges offer engineering courses. The Associate Degree in engineering is offered at Blue Ridge, Central Virginia, Danville, Germanna, J. Sargeant Reynolds, John Tyler, Mountain Empire, New River, Northern Virginia, Piedmont Virginia, Southwest Virginia, Thomas Nelson, Tidewater, Virginia Highlands, Virginia Western.

    Engineering Technology credits are not accepted for transfer by the College of Engineering.

Required Academic Progress

    Minimum requirements for graduation include the attainment of at least a "C" (2.0 Grade Point Average) average, both overall and in-major. Some departments may have additional requirements or specifications concerning the acceptability of C- or lower grades for in-major courses. Students are expected to sustain progress towards completion of their degree requirements, consulting with their academic advisor regularly.

    In addition to meeting university requirements, eligibility requirements for enrollment have been established by individual departments.

    Entry into a degree-granting department requires that a student successfully complete all first year required courses. Additional requirements are specific to degree programs and are as follows:

  • Entry to General Engineering requires a minimum overall VT GPA of 2.0.
  • Chemical Engineering: a student must have completed CHEM 1036/1046.
  • Computer Science: a student must earn a grade of C or greater in CS 1114 or 1124
  • Construction Engineering and Management requires departmental application & interview. http://www.mlsoc.vt.edu/BS+CEM
  • All degree-granting majors accept applicants on a space-available basis. Applicants with a minimum 3.0 overall VT GPA are guaranteed their first-choice major. Applicants below a 3.0 overall VT GPA will be rank ordered according to GPA and placed in a major based on space availability. A student will be limited to three separate applications; if student is unsuccessful in entering first choice engineering major by third attempt, they must accept a lower-than-first-choice major (either inside or outside the college). (See http://www.enge.vt.edu/Undergraduate/change_of_major.html for major change process and timing.)

Graduation Requirements

    Degree requirements in the college range from 120 to 136 semester hours. Students should see their departmental advisors to determine the exact requirements of their degree. The 2.0 GPA minimum requirement for graduation also applies to all courses attempted in the student's departmental major; substitute non-departmental courses are not included. Where courses have substantial duplication, credit toward graduation will be given for one course only. Up to 2 credits in physical education may be used toward graduation as free elective credit. ESM 4404 and other courses below the academic potential of the engineering student may not be used towards graduation.

    The senior academic year must be completed in residence while enrolled in the major department in the College of Engineering.

    Engineering curricula have uniform minimum requirements in the humanities and social sciences. The 18-credit minimum includes 6 credits of Freshman English, usually completed during the first year, and 12 credits of humanities and social science electives selected from Areas 2 and 3 (6 credits each) of the Curriculum for Liberal Education.

    Although pass/fail courses may be authorized for those who maintain a GPA above 2.0, students should recognize future disadvantages when transferring to other departments or applying for admission to other professional or graduate colleges. Engineering students are expected to take all major department courses on a grade basis. Independent study and undergraduate research courses are available for those who maintain a GPA above 2.0 overall and in their departmental majors; some departments may require a higher GPA.

    The College of Engineering will accept advanced ROTC credit as free elective credit towards graduation. Some departments in engineering may allow the use of selected ROTC courses to meet technical elective requirements. Consult specific departments in the College of Engineering for information.